A Global Stability Criterion for Scalar Functional Differential Equations
نویسندگان
چکیده
منابع مشابه
A Global Stability Criterion for Scalar Functional Differential Equations
We consider scalar delay differential equations x′(t) = −δx(t)+f(t, xt) (∗) with nonlinear f satisfying a sort of negative feedback condition combined with a boundedness condition. The well-known Mackey–Glass-type equations, equations satisfying the Yorke condition, and equations with maxima all fall within our considerations. Here, we establish a criterion for the global asymptotical stability...
متن کاملGlobal stability of the equilibrium for scalar delay differential equations
This version has a lot of inserted Comments to indicate what must be done and what will be in here when this is completed. [These Comments also note open questions, where possible, so for suggested results not noted as open one may assume the proofs are known, even if not yet included.] This was originally intended as a revised version of what became [5] before publication, then became comments...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A Stability Criterion for Delay Differential Equations with Impulse Effects
In this paper, we prove that if a delay differential equation with impulse effects of the form x (t) = A(t)x(t) + B(t)x(t − τ) , t = θ i , ∆x(θ i) = C i x(θ i) + D i x(θ i−j), i ∈ N, verifies a Perron condition then its trivial solution is uniformly asymptotically stable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematical Analysis
سال: 2003
ISSN: 0036-1410,1095-7154
DOI: 10.1137/s0036141001399222